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1. Freshly prepared mitochondria were incubated with B-hydroxybutyrate, oxidized cytochrome ¢, ADP, Pi, and
cyanide, P-hydroxybutyrate is oxidized by an NAD'--dependent dehydrogenase. (50%) (Refer attached

illustrations)
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The experimenter measured the rate of oxidation of B-hydroxybutyrate and the rate of formation of ATP.

(a) Indicate the probable flow of electrons iri this system. '

(b) How m;my moles of ATP would you expect to be formed per mole of B-hydroxybutyrate oxidized in this
system? :

(c) Why is B-hydroxybutyrate added rather than NADH?

(d) What is the function of cyanide?

(e) Write a balanced equation for the overail reaction occurring in tr.is system.

2. A new-developed lipase, CK4, is used in some laundry detergents to help remove lipid-type stains. (20%)
(a) What unusual kind of stability does this suggest for CK4?
(b) CK4 does have a problem, in that it becomes inactivated by oxidation of a methionine close to the active site,
Suggest a way to make a better CK4.

3. Design a radiotracer experiment that would allow you to determine which proportion of glucose catabolism in a
given tissue preparation occurs through the pentose phosphate pathway and which proportion through glycolysis
and the citric acid cycle. Describe your rationles. (30%) (Refer attached illustrations)

(Assume that you can synthesize glucose Inbeled with “C in any desired position or combination of positions.
Assume also that you can trap CO: after administration of labeled glucose and determine its radioactivity.)
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1. —R5Z LM (specific heat capacity) FMRBEZ M - BICp =a+bT +cT7 » b Cp BB K] -
TRBEIKD s b, c BIFBHEC-TERER 2SCE SCEHER > 4, 5, c TSR 2=3,850, &=1.5x10",
o=-2.5x107« (1) BURFEILBAEEAZ THLARSP ? (2) SkelZIRHE 30°C HMME 80T -
HBURSDORE ? (50%) '

2 —FRAMIAE (plate heat exchanger) T HRBHSSEH » HITRATEM A=10(]S > MBS
x=Smm] > BSBRIRR (thermal conductivity) 55 k=30{W/m'K] - 5 MIABEFI RN - BF L
BIEHERSIEY (scale) » IRSEWC R 1<0.1[mm) - SNSRI £=20[W/m'K] - H3cHa8 > 3
Bl (hot side) FEMRMUK - SUBFAAM{R M (convective heat transfer coefficient) £ A=1,500(W/m2°K] ; 3%
IR (cold side) WMBR HBIFAIFRBE £=800(W/m2'K]-( | YEUNEEE Frid = 2 »
HMEFRETIE MR T MA R U (overall heat transfer coefficient) « (2) BB 0 M08
ZBESFIR 100C K 20°C » SoRERTIRE THEARZ BIERE LD ? (50%)

BB

148 G180 Immunoassay ( BENMBME) ZHBRHERRE DK LA «(25%)

2B PI3R Y Bioassay (£WMEE) CRBRRERSDIF L2 -(25%)

SHEETRAERWER  BANEERS I EWHR - EFEAMBRT 28 " NEE
¥, (Internal standard) -7 S EE# M ¥ | ( External standard) ~ 5% " ¥ B i A 3 3
( Standard addition) FAF sk  MMBELFIE FEZ WA GRS SEZHRR -
(25%)

ALBMBA T ZBE  RESAKEHEBITRERSAN L MERER - L8
THIMBEEETWHE? (25%)

BT

1. NSRS MAE Y Supercritical gas extraction) 2 LUEHEF RS S MRS » HAI— BB MTEEGEN
B2 BB ? (40%)

2. HRTITI B E R Extrusion) RBEE & 5, 2 S5 ST (60%)
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tase phosphate pathway, operating
in reverse, produce ribose-5
phosphate (see text).
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The fate of carbon In the citric acid
cycle. Acetyl-CoA entering the citric acid
cycle is highlighted (in biue) to show the fate
of its two carbons as far as malate. Carboxyl
groups that leave the cycle as CO; are shown
in green. Note that these departing groups
contsin carbons incorporated as acetyl-CoA in
earlier tums of the cycle.



